# 368. Physical Properties and Chemical Constitution. Part XXII. Some Primary, Secondary, and Tertiary Amines. 

By Arthur I. Vogel.

New determinations have been made of the refractivities at $20^{\circ}$ and the parachors of a series of primary aliphatic amines, secondary aliphatic and aromatic amines, and tertiary aliphatic and aromatic amines. By combining the new data with the constants for the alkyl groups (Part XI, this vol., p. 611) and for phenyl (Part XV, this vol., p. 654), the following new constants have been evaluated:

|  | $P$. | $R_{\text {c }}$. | $R_{\text {D }}$. | $R_{\text {F }}$. | $R_{\mathbf{G}^{\prime}}$. | $M n_{\text {d }}{ }^{20}{ }^{\circ}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{2}$ (primary aliphatic amine) | $44 \cdot 0$ | $4 \cdot 414$ | $4 \cdot 438$ | 4.507 | 4.570 | $22 \cdot 64$ |
| NH (secondary aliphatic amine) ... | $28 \cdot 4$ | $3 \cdot 572$ | $3 \cdot 610$ | 3.667 | $3 \cdot 732$ | $23 \cdot 34$ |
| NH (secondary aromatic amine) ... | $27 \cdot 1$ | $4 \cdot 548$ | 4.678 | 5.000 | $5 \cdot 273$ | 29.52 |
| N (tertiary aliphatic amine) . | $7 \cdot 2$ | 2.698 | 2.744 | 2.820 | 2.914 | $24 \cdot 37$ |
| N (tertiary aromatic amine) | ? | 4.085 | $4 \cdot 243$ | $4 \cdot 675$ | $5 \cdot 155$ | $30 \cdot 23$ |

The corresponding values for N in primary and secondary amines, deduced by subtracting the constants for H in $\mathrm{CH}_{2}$ (Part IX, $J$., 1946, 133), are :

|  | $P$. | $R_{\text {c }}$. | $R_{\text {D }}$. | $R_{\text {F }}$. | $R_{\mathbf{G}^{\prime}}$. | $M n^{20^{0}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N (primary aliphatic amine). | $12 \cdot 6$ | $2 \cdot 356$ | $2 \cdot 376$ | $2 \cdot 414$ | $2 \cdot 482$ | 27.80 |
| N (secondary aliphatic amine) | $12 \cdot 7$ | $2 \cdot 546$ | $2 \cdot 582$ | $2 \cdot 624$ | $2 \cdot 692$ | 25.90 |
| N (secondary aromatic amine) | 11.4 | $3 \cdot 522$ | 3.550 | $3 \cdot 957$ | 4.223 | 32.08 |

ThE different contributions of nitrogen to the molecular refractivity according to the state of combination have long been recognised. For instance, Brühl (for review, see Eisenlohr, " Spektrochemie organischer Verbindungen : Molekularrefraktion und -dispersion ", Ferdinand Enke, 1912, pp. 55, 62) has computed values for nitrogen in primary, secondary, and tertiary aliphatic and aromatic amines as well as in many other states of combination. Eisenlohr (in Landolt-Börnstein, "Tabellen ", 1923, II, 985) gives the following constants for nitrogen :

|  | $R_{\text {c }}$. | $R_{\text {D }}$. | $R_{\text {F }}$. | $R_{G^{\prime}}$. |
| :---: | :---: | :---: | :---: | :---: |
| N (in primary amines) | $2 \cdot 309$ | $2 \cdot 322$ | $2 \cdot 368$ | $2 \cdot 397$ |
| N (in secondary amines) | $2 \cdot 478$ | $2 \cdot 502$ | $2 \cdot 561$ | $2 \cdot 605$ |
| N (in tertiary amines) | $2 \cdot 808$ | $2 \cdot 840$ | 2.940 | $3 \cdot 000$ |
| N (in tertiary imides) | $3 \cdot 740$ | $3 \cdot 776$ | 3.877 | $3 \cdot 962$ |
| N (in cyanides) | 3-102 | 3-118 | 3•155 | 3-173 |

In the original table of atomic and structural parachors, Sugden ( $J ., 1924,125,1180$ ) gave " $\mathrm{N}=(12.5$ )" and stated (loc. cit., p. 1179) : " Certain figures which are deduced from one or two compounds only, or which are based on somewhat doubtful data, are enclosed in brackets and can only be regarded as provisional values ". The data from which this value was deduced are not stated, but this " provisional value" was widely employed in various tables in that paper.

Presumably the figure 12.5 was subsequently adopted but no additional evidence seems to have been published (see, e.g., Sugden, Reed, and Wilkins, J., 1925, 127, 1526; Henley and Sugden, J., 1929, 1060 ; Sugden, "The Parachor and Valency", 1930, p. 38).

New determinations of the refractivities at $20^{\circ}$ and the parachors of a series of primary alkylamines have now been made, and the $\mathrm{NH}_{2}$ contributions computed by subtraction of the constants for alkyl groups (Part XI, loc. cit.). Only one polymethylene diamine (ethylenediamine) has so far been investigated : this, coupled with the constants for $\mathrm{CH}_{2}$ (Part IX, J., 1946, 133), provides an independent determination of the $\mathrm{NH}_{2}$ constants. All the results are collected in Table I, and the mean values have been deduced from all the alkylamines except sec.-butylamine.

Table I.
$V$ alues for $\mathrm{NH}_{2}$ from primary amines.

| Amine. | $P$. | $R_{\text {c }}$. | $R_{\text {D }}$. | $R_{\text {F }}$. | $R_{G^{\prime}}$. | $M n^{20}{ }^{\circ}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NH}_{2} \mathrm{Pr}^{n}$. | $44 \cdot 1$ | $4 \cdot 46$ | $4 \cdot 48$ | $4 \cdot 56$ | $4 \cdot 61$ | $22 \cdot 81$ |
| $\mathrm{NH}_{2} \mathrm{Bu}^{n}$ | $43 \cdot 3$ | $4 \cdot 35$ | $4 \cdot 37$ | $4 \cdot 44$ | $4 \cdot 49$ | $22 \cdot 65$ |
| $\mathrm{NH}_{2} \mathrm{Bu}^{i}$ | $42 \cdot 8$ | $4 \cdot 34$ | $4 \cdot 36$ | $4 \cdot 42$ | $4 \cdot 56$ | $22 \cdot 64$ |
| $\mathrm{NH}_{2} \mathrm{Bu}^{\text {s }}$ | $46 \cdot 9$ | $4 \cdot 66$ | $4 \cdot 68$ | $4 \cdot 75$ | $4 \cdot 81$ | $21 \cdot 69$ |
| $\mathrm{NH}_{2} \mathrm{Am}^{n}$ | $44 \cdot 5$ | $4 \cdot 44$ | $4 \cdot 47$ | $4 \cdot 53$ | $4 \cdot 58$ | $22 \cdot 56$ |
| $\mathrm{NH}_{2} \mathrm{Am}^{i}$ | $44 \cdot 4$ | $4 \cdot 41$ | $4 \cdot 44$ | $4 \cdot 52$ | $4 \cdot 56$ | $22 \cdot 54$ |
| $\mathrm{NH}_{2}{ }^{\circ} \mathrm{C}_{6} \mathrm{H}_{13}{ }^{n}$ | $44 \cdot 4$ | $4 \cdot 41$ | $4 \cdot 43$ | $4 \cdot 51$ | $4 \cdot 56$ | $22 \cdot 39$ |
| $\mathrm{NH}_{2}{ }^{\circ} \mathrm{C}_{7} \mathrm{H}_{15}{ }^{n}$ | - | $4 \cdot 39$ | $4 \cdot 41$ | $4 \cdot 47$ | $4 \cdot 53$ | $22 \cdot 38$ |
| $\mathrm{NH}_{2} \mathrm{C}_{8} \mathrm{H}_{17}{ }^{n}$ | - | $4 \cdot 47$ | $4 \cdot 49$ | $4 \cdot 57$ | $4 \cdot 64$ | $22 \cdot 28$ |
| $\mathrm{NH}_{2} \mathrm{C}_{3} \mathrm{H}_{5}$ | $43 \cdot 2$ | $4 \cdot 43$ | $4 \cdot 46$ | $4 \cdot 52$ | $4 \cdot 58$ | 23.51 |
| $\mathrm{NH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH}_{2}$ | $45 \cdot 5$ | $4 \cdot 44$ | $4 \cdot 47$ | $4 \cdot 53$ | $4 \cdot 59$ | $22 \cdot 68$ |
| Mean $\mathrm{NH}_{2}$ (excluding ${ }^{*}$ ) | $44 \cdot 0$ | $4 \cdot 414$ | $4 \cdot 438$ | $4 \cdot 507$ | $4 \cdot 570$ | $22 \cdot 64$ |
| $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NH}_{2}$ | $41 \cdot 8$ | $5 \cdot 13$ | $5 \cdot 20$ | $5 \cdot 40$ | - | $25 \cdot 63$ |
| $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH}_{2}$ | $45 \cdot 1$ | $4 \cdot 26$ | $4 \cdot 26$ | $4 \cdot 32$ | $4 \cdot 34$ | 21.05 |
| $\mathrm{C}_{6} \mathrm{H}_{11} \cdot \mathrm{NH}_{2} \ldots \ldots .$. | 47-1 | $4 \cdot 63$ | $4 \cdot 68$ | $4 \cdot 75$ | $4 \cdot 80$ | 21.70 |

The figures deduced from aniline and benzylamine are given at the end of the table for purposes of comparison : the constants for phenyl were those from Part XV (this vol., p. 654) and for benzyl from $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{Cl}$ (XIV, 281). The constants from cyclohexylamine, $\mathrm{C}_{6} \mathrm{H}_{11} \cdot \mathrm{NH}_{2}$, deduced with the aid of the data for dicyclohexyl (XIX, 445), are not regarded as very trustworthy in view of the difficulties attending the manipulation of this strongly fuming compound.

The constants for the secondary amine group, $>\mathrm{NH}$, have been deduced by two independent methods: (1) From dialkylamines and alkyl groups in aliphatic hydrocarbons: under this heading must be included dicyclohexylamine, i.e., $\mathrm{C}_{6} \mathrm{H}_{11} \cdot \mathrm{NH} \cdot \mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{C}_{6} \mathrm{H}_{11} \cdot \mathrm{C}_{6} \mathrm{H}_{11}$ (XIX, 445). (2) From ethyl $N$-alkylcarbamates and esters, e.g., $\mathrm{CH}_{3} \cdot \mathrm{NH} \cdot \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{CH}_{3} \cdot \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$ (XIII, 189). It will be noted that the constants for $\mathrm{CH}_{2}$ are not involved. The results are summarised in Table II; in the calculation of the mean values, the figures for secondary aliphatic amines containing secondary alkyl groups have been omitted. The values for NH computed from secondary aromatic amines $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{NHAlkyl}-\mathrm{C}_{6} \mathrm{H}_{5} \cdot$ Alkyl (Part X, this vol., p. 607) are given in Table III; the parachor contribution agrees within about 1 unit, but the refractivities are uniformly higher. The measurements of $n_{a^{\prime}}$ for secondary aromatic amines with a Pulfrich refractometer are difficult because of the faintness of the line and in consequence the values for $R_{G}$, for these compounds are somewhat less trustworthy.

Table II.
Values for NH from secondary aliphatic amines.

|  | $P$. | $R_{\mathbf{0}}$. | $\boldsymbol{R}_{\text {D }}$. | $R_{\text {F }}$. | $R_{G^{\prime}}$. | $M n^{20^{\circ}}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NHEt}_{2}$ | 29.5 | $3 \cdot 66$ | $3 \cdot 70$ | $3 \cdot 77$ | $3 \cdot 86$ | 23.96 |
| NHPr ${ }_{2}{ }^{n}$ | 28.0 | $3 \cdot 57$ | $3 \cdot 62$ | $3 \cdot 66$ | $3 \cdot 72$ | 23.68 |
| $\mathrm{NHPr}_{2}{ }^{\text {d }}$ | $29 \cdot 0$ | $3 \cdot 67$ | $3 \cdot 69$ | $3 \cdot 75$ | $5 \cdot 84$ | 24.00 |
| NHBu ${ }_{2}{ }^{n}$ | 28.2 | $3 \cdot 61$ | $3 \cdot 65$ | $3 \cdot 70$ | $3 \cdot 78$ | 23.61 |
| $\mathrm{NHBu}_{2}{ }^{\text {i }}$ | $28 \cdot 1$ | $3 \cdot 57$ | $3 \cdot 59$ | $3 \cdot 66$ | $3 \cdot 72$ | 23.03 |
| NHBu ${ }_{2}{ }^{*}$ | $31 \cdot 7$ | $3 \cdot 73$ | $3 \cdot 74$ | $3 \cdot 81$ | $3 \cdot 88$ | 21.92 |
| $\mathrm{NHAm}_{2}{ }^{\boldsymbol{n}}$ | $28 \cdot 7$ | $3 \cdot 46$ | $3 \cdot 49$ | $3 \cdot 55$ | $3 \cdot 61$ | 23.57 |
| NHAm ${ }^{\text {a }}$ | 28.4 | $3 \cdot 58$ | $3 \cdot 63$ | $3 \cdot 69$ | $3 \cdot 74$ | $23 \cdot 30$ |
| $\mathrm{C}_{6} \mathrm{H}_{11} \cdot \mathrm{NH} \cdot \mathrm{C}_{6} \mathrm{H}_{11} \quad \ldots \ldots \ldots \ldots \ldots .$. | $30 \cdot 4$ | $3 \cdot 66$ | $3 \cdot 69$ | $3 \cdot 76$ | $3 \cdot 81$ | $23 \cdot 11$ |
| $\mathrm{CH}_{3} \cdot \mathrm{NH} \cdot \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \ldots \ldots \ldots \ldots \ldots$. | 27.6 | $3 \cdot 44$ | $3 \cdot 49$ | $3 \cdot 55$ | $3 \cdot 60$ | 25.44* |
| $\mathrm{CH}_{3} \cdot \mathrm{CH}_{2} \cdot \mathrm{NH} \cdot \mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5} \ldots \ldots \ldots$. | 27.0 | $3 \cdot 60$ | $3 \cdot 63$ | $3 \cdot 69$ | $3 \cdot 75$ | 25.19 * |
| Mean NH (excluding *)......... | 28.4 | $3 \cdot 572$ | $3 \cdot 610$ | $3 \cdot 667$ | 3.732 | $23 \cdot 34$ |

Table III.
Values for NH from secondary aromatic amines.

|  | $P$. | $R_{\text {c }}$. | $R_{\text {D }}$. | $R_{\text {F }}$. | $R_{\text {G }}$. | $M n^{20}{ }^{\circ}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NHMePh . | $27 \cdot 9$ | $4 \cdot 46$ | $4 \cdot 57$ | $4 \cdot 90$ | $5 \cdot 19$ | $30 \cdot 43$ |
| NHEtPh | $27 \cdot 2$ | $4 \cdot 56$ | $4 \cdot 70$ | $5 \cdot 02$ | $5 \cdot 24$ | 29.50 |
| NHPr ${ }^{n} \mathrm{Ph}$. | $26 \cdot 2$ | $4 \cdot 57$ | $4 \cdot 72$ | $5 \cdot 03$ | $5 \cdot 32$ | 29.22 |
| $\mathrm{NHBu}{ }^{\text {² }} \mathrm{Ph}$ | $27 \cdot 0$ | $4 \cdot 60$ | $4 \cdot 72$ | 5.05 | $5 \cdot 34$ | 28.91 |
| Mean NH. | $27 \cdot 1$ | $4 \cdot 548$ | 4.678 | $5 \cdot 000$ | $5 \cdot 273$ | 29.52 |

New determinations have also been made of the refractivities at $20^{\circ}$ and the parachors of a number of tertiary amines. The data for trialkylamines have been employed in the evaluation in the usual manner of the contributions of the N atom. The results are presented in Table IV :

Table IV.
Values for N from tertiary aliphatic amines.

the values deduced from benzyldiethylamine are also included (the constants for the benzyl group were computed from $\mathrm{C}_{6} \mathrm{H}_{5} \cdot \mathrm{CH}_{2} \mathrm{Cl}-\mathrm{Cl}$ ) and are in moderate agreement with the mean constants. For tertiary aromatic amines, $\mathrm{NPhAlk}_{2}$, the constants for N have been computed by subtracting $\{\mathrm{Ph}$ (Part XV, loc. cit.) +2 Alkyl (Part XI, loc. cit.) $\}$. All the results are collected in Table V. It will be noted that the parachor for N appears to decrease as the molecular weight of the alkyl group increases; it is hoped to confirm the surface-tension results by the method of maximum bubble pressure in order to rule out the possibility that the decreasing parachor values are due to slight departures from zero contact angles.

Table V .
Values for N from tertiary aromatic amines.

|  | $P$. | $R_{\text {d }}$. | $R_{\text {d }}$. | $R_{\mathbf{F}}$. | $R_{\mathbf{G}^{\prime}}$. | $M n^{20}{ }^{20}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{NMe}_{2} \mathrm{Ph}$ | $11 \cdot 5$ | 3.99 | $4 \cdot 15$ | $4 \cdot 50$ | $4 \cdot 95$ | $29 \cdot 48$ |
| $\mathrm{NEt} \mathrm{t}_{2} \mathrm{Ph}$ | $7 \cdot 9$ | 4.08 | $4 \cdot 24$ | $4 \cdot 68$ | $5 \cdot 20$ | $30 \cdot 61$ |
| $\mathrm{NPr}_{2}{ }^{\text {n }} \mathrm{Ph}$ | $3 \cdot 8$ | $4 \cdot 12$ | $4 \cdot 27$ | $4 \cdot 73$ | $5 \cdot 22$ | $30 \cdot 49$ |
| $\mathrm{NBu}_{2}{ }^{n} \mathrm{Ph}$ | $2 \cdot 3$ | $4 \cdot 15$ | $4 \cdot 31$ | $4 \cdot 79$ | $5 \cdot 25$ | $30 \cdot 32$ |
| Mean N | ? | $4 \cdot 085$ | 4-243 | $4 \cdot 675$ | 5-155 | $30 \cdot 23$ |

The results deduced from ethyl nitrilotricarboxylate, $\mathrm{N}\left(\mathrm{CO}_{2} \mathrm{Et}\right)_{3}$, are of interest. If the $\mathrm{CO}_{2} \mathrm{Et}$ constants are calculated from ethyl oxalate (XIII, 236), the following values for N are obtained: P $13 \cdot 2 ; R_{\mathrm{C}} 2.41 ; R_{\mathrm{D}} 2 \cdot 44 ; R_{\mathrm{F}} 2.48 ; R_{6^{\prime}} 2.51 ; M n_{\mathrm{D}}^{20} 24 \cdot 12$. The use of the mean constants for COO (esters), deduced in Part XIII (this vol., p. 624), leads to abnormal results.

It is instructive to calculate the constants for N by subtracting the values for H in $\mathrm{CH}_{2}$ (Part IX, $J ., 1946,133$ ) from the mean values for $\mathrm{NH}_{2}$ and NH . The results are given below.

|  | $P$. | $R_{\text {d }}$. | $R_{\text {D }}$. | $R_{\text {F }}$. | $R_{\text {G }}$. | $M n_{\text {D }}^{20}{ }^{\circ}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N (in primary aliphatic amines) | $12 \cdot 6$ | $2 \cdot 362$ | 2.382 | 2.421 | 2.490 | 27.76 |
| N (in secondary aliphatic amines)... | $12 \cdot 7$ | $2 \cdot 546$ | $2 \cdot 582$ | $2 \cdot 624$ | $2 \cdot 692$ | 25.90 |
| N (in secondary aromatic amines)... | $11 \cdot 4$ | $3 \cdot 522$ | 3.550 | 3.957 | $4 \cdot 233$ | 32.08 |
| N (in cyanides) | $15 \cdot 4$ | $0 \cdot 900$ | 0.891 | $0 \cdot 851$ | $0 \cdot 822$ | $23 \cdot 31$ |

The following conclusions may be drawn from these figures: (1) The parachor for N is approximately the same in primary and in secondary amines but differs from that in tertiary amines (compare Sugden who gives, and uses, one value for N in all nitrogen compounds). (2) The refractivities for N differ according to the state of combination * and at least five values for N in amines (primary aliphatic; secondary aliphatic; secondary aromatic; tertiary aliphatic; and tertiary aromatic) are necessary. This view would agree with that originally expressed by

* A sufficient number of primary aromatic amines has not yet been investigated by the author to decide whether N in these differsf rom that in primary aliphatic amines.

Bruhl but differs from that of Eisenlohr; the refractivities deduced by Eisenlohr (compare Z. physikal. Chem., 1912, 79, 129; Landolt-Bornstein, "Tabellen", 1923, II, 985) for N in primary, secondary, and tertiary amines, which are widely quoted (see, e.g., Ostwald-Luther, "Hilfsbuch zur Ausführung physiko-chemischer Messungen ", Akad. Verlag, 5th Edition, 1931, p. 910; Fajans, in Weissberger, " Physical Methods of Organic Chemistry", Interscience, $1945, \mathrm{I}, 673$ ), are consequently meaningless and definitely misleading. The constants for N in cyanides have been computed from $\mathrm{CN}-(\mathrm{C}+F$, terminal) (Part XVII, this vol., p. 674).

The question of the refraction of the various electron groups involving nitrogen will form the subject of a future communication (compare Smyth, "Dielectric Constant and Molecular Structure "', Chemical Catalog Co., 1931, p. 152; Denbigh, Trans. Faraday Soc., 1940, 36, 397).

## Experimental.

Primary aliphatic amines. 25-50 G. samples of the pure commercial products were dried over potassium hydroxide pellets and fractionated, with adequate precautions against the entrance of moisture, in an all-glass apparatus, and three middle fractions were collected for the physical measurements. The purified specimens were kept in Pyrex test-tubes, closed with corks covered with tin or platinum foil, and used immediately after distillation. Precautions were taken as far as possible to prevent the entrance of moisture during the measurements. The b. p.s are given under the physical measurements below. The sources of the various amines were as follows :-n-propyl, allyl, $n$-butyl, isobutyl, sec.-butyl, $n$-amyl, and isoamyl, from Eastman Kodak; $n$-hexyl, $n$-heptyl, and $n$-octyl from Sharples; cyclohexyl from Light; ethylenediamine from Eastman Kodak.

Aniline. A.R. Aniline (Hopkin and Williams) was dried with potassium hydroxide pellets and distilled from an all-glass apparatus; b. p. $184 \cdot 5^{\circ} / 750 \mathrm{~mm}$.

Benzylamine. A pure B.D.H. sample was dried over potassium hydroxide pellets and twice distilled from an all-glass apparatus; b. p. $185^{\circ} / 767 \mathrm{~mm}$.

Secondary aliphatic amines. The pure commercial products were purified and manipulated as detailed for primary aliphatic amines. Diethylamine and di- $n$-butylamine were presented by Sharples; di- $n$-propyl-, diisopropyl-, diisobutyl-, di-sec.-butyl-, di- $n$-amyl-, and diisoamyl-amine were purchased from Eastman Kodak.

Dicyclohexylamine. The commercial product (Light) was distilled, and the fraction, b. p. $251.5^{\circ} / 760 \mathrm{~mm}$., collected; this had a very pale green colour, which was removed upon distillation under reduced pressure; b. p. $113 \cdot 5^{\circ} / 9 \mathrm{~mm}$.

N -Nitrosomethylaniline. This was prepared from B.D.H. pure monomethylaniline according to Org. Synth., 1933, 13, 82, except that a 1-1 beaker replaced the $3-1$. flask, the extraction with benzene was omitted, and the compound was dried with anhydrous calcium sulphate; the yield was not appreciably affected. The $N$-nitrosomethylaniline had b. p. $120^{\circ} / 13 \mathrm{~mm}$. The b. p. of $135-137^{\circ} / 13 \mathrm{~mm}$. recorded in Organic Syntheses would appear to be in error.

N -Nitrosoethylaniline. This was prepared similarly to the methyl compound from B.D.H. pure monoethylaniline; b. p. $131^{\circ} / 20 \mathrm{~mm}$.

Monomethylaniline. 78 G . of pure $N$-nitrosomethylaniline were reduced with 150 g . of tin and 300 ml . of concentrated hydrochloric acid, affording 46 g . of pure, colourless monomethylaniline, b. p. $193^{\circ} / 738 \mathrm{~mm}$.

Monoethylaniline. 75 G . of pure $N$-nitrosoethylaniline were similarly reduced and yielded 43 g . of pure, almost colourless monoethylaniline, b. p. $202 \cdot 5^{\circ} / 750 \mathrm{~mm}$.

Mono-n-propylaniline. 230 G . of A.R. aniline were heated with 123 g . of $n$-propyl bromide for 8 hours and the excess of aniline was removed by precipitation with $50 \%$ zinc chloride solution (Hickinbottom, $J ., 1930,993$ ). The secondary amine was isolated by several extractions with light petroleum (b. p. $60-80^{\circ}$ ), the solvent removed, and the product fractionated. The crude amine ( 85 g .) distilled at $218-222^{\circ}$. Redistillation from a little zinc dust gave pure $n$-propylaniline, b. p. $219^{\circ} / 758 \mathrm{~mm} ., d_{4^{\circ}}^{20^{\circ}}$ $0.9460, n_{\mathrm{D}}^{20} 1.54375$. For the physical measurements, the compound was distilled under reduced pressure; b. p. $96^{\circ} / 9 \mathrm{~mm}$.

Mono-n-butylaniline. A commercially pure sample, kindly presented by Sharples Chemicals Inc. was fractionated from a little zinc dust, and the fraction, b. p. $237-238^{\circ} / 760 \mathrm{~mm}$., collected. Redistillation gave a colourless product, b. p. $105^{\circ} / 3 \mathrm{~mm}$.

Ethyl N-methylcarbamate. This was prepared from $33 \%$ aqueous methylamine solution, ethyl chloroformate, and sodium hydroxide solution, but the product was distilled under normal pressure and not under reduced pressure (cf. Org. Synth., 1932, 12, 38). The ester distilled as a colourless liquid, b. p. $169 \cdot 5^{\circ} / 769 \mathrm{~mm}$., and there was no sign of decomposition.

Ethyl N -ethylcarbamate. This compound was prepared from 110 ml . of ether, 90 g . of $33 \%$ aqueous ethylamine solution, 72.5 g . of ethyl chloroformate, and 26.5 g . of A.R. sodium hydroxide dissolved in 40 ml . of water (see Org. Synth., 1932, 12, 38). The yield of pure, colourless ester, b. p. $175^{\circ} / 748 \mathrm{~mm}$., was 64 g .

Tertiary aliphatic amines. The pure commercial products (triethylamine, tri- $n$-butylamine, and benzyldiethylamine from Sharples; tri- $n$-propylamine, tri- $n$-amylamine, and triisoamylamine from Eastman Kodak) were shaken mechanically with about half the volume of A.R. potassium hydroxide pellets, filtered, and distilled from sodium in a flask with a fractionating side arm, due precautions being taken to prevent access of moisture. The b. p.s are given under the physical properties.

Ethyl nitrilotricarboxylate. This was prepared from urethane, dry ether, sodium, and ethyl chloroformate (Org. Synth., $1944,24,60$ ) and was twice distilled under reduced pressure; b. p. $143^{\circ} / 10 \mathrm{~mm}$.

Dimethylaniline. A mixture of 50 g . of A.R. dimethylaniline and 25 g . of redistilled acetic anhydride was refluxed for 3 hours and then distilled until about 10 ml . remained; the residue contained any acetyl derivatives which might have been present (compare Brand and Franz, J. pr. Chem., 1927, 115,
153). The fraction, b. p. 193-194 ${ }^{\circ}$, was collected separately and redistilled; pure dimethylaniline was collected at $194^{\circ} / 760 \mathrm{~mm}$. (acetanilide has b. p. $305^{\circ} / 760 \mathrm{~mm}$. ; acetomethylanilide has b. p. $253^{\circ} / 712 \mathrm{~mm}$.).

Diethylaniline. A mixture of 50 g . of redistilled diethylaniline, b. p. $214-215^{\circ}$, and 30 g . of redistilled acetic anhydride was refluxed for 4 hours, and the pure diethylaniline, b. p. $214 \cdot 5^{\circ} / 748 \mathrm{~mm}$., was isolated as for dimethylaniline. This was distilled under reduced pressure for the physical measurements; b. p. $86 \cdot 5^{\circ} / 6 \mathrm{~mm}$.

Di-n-propylaniline. A mixture of 45 g . of $n$-propylaniline, b. p. $218-220^{\circ} / 758 \mathrm{~mm}$. (mainly $219^{\circ}$ ), and 82 g . of $n$-propyl bromide was refluxed for 9 hours. The solid reaction product was rendered alkaline with sodium hydroxide solution, and the upper layer separated. This was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and distilled : the excess of $n$-propyl bromide ( 35 g .) passed over at $72-73^{\circ}$, followed by the di- $n$-propylaniline ( 37 g .) at $241-243^{\circ} / 758 \mathrm{~mm}$. (mainly $242^{\circ}$ ) as a very pale yellow liquid. The colour could be completely removed by distillation from a little zinc dust. For the physical measurements, the colourless product was redistilled under reduced pressure: b. p. $95^{\circ} / 4 \mathrm{~mm}$.

Di-n-butylaniline. A mixture of 37 g . of $n$-butylaniline, b. p. $237-238^{\circ}$, and 68 g . of $n$-butyl bromide was heated on a boiling water-bath for 16 hours by which time the reaction product was solid. It was treated with sodium hydroxide solution until alkaline, and ether was added to facilitate separation of the organic layer. The ethereal extract was washed with water, dried, and the solvent removed : distillation yielded 22 g . of $n$-butyl bromide, b. p. $90-110^{\circ}$, and 37 g . of di- $n$-butylaniline, b. p. $269-270^{\circ} / 760 \mathrm{~mm}$. The pale colour was removed by distillation under reduced pressure: b. p. $123^{\circ} / 6 \mathrm{~mm}$.
503. n -Propylamine. B. p. $48^{\circ} / 750 \mathrm{~mm} . ; M 59 \cdot 11$; $n_{\mathrm{C}} 1 \cdot 38604$, $n_{\mathrm{D}} 1 \cdot 38815, n_{\mathrm{F}^{\prime}} 1 \cdot 39339, n_{\mathrm{G}^{\prime}} 1 \cdot 39715$; $R_{\mathrm{C}} 19 \cdot 36, R_{\mathrm{D}} 19 \cdot 45, R_{\mathrm{F}} 19 \cdot 69, R_{\mathbf{G}^{\prime}} 19 \cdot 85 ; M n_{\mathrm{D}}^{20^{\circ}} 82 \cdot 06$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7173, d_{4^{0}}^{40 \cdot 8^{\circ}} 0 \cdot 6955$. Apparatus $A$.
(These headings apply to all subsequent tables in this paper.)

504. n-Butylamine. B. p. $77^{\circ} / 750 \mathrm{~mm}$.; $M 73 \cdot 14$; $n_{\mathrm{G}} 1 \cdot 39870, n_{\mathrm{D}} 1 \cdot 40086, n_{\mathrm{F}} 1 \cdot 40613, n_{\mathrm{G}^{\prime}} 1 \cdot 41003$; $R_{\mathrm{C}} 23 \cdot 85, R_{\mathrm{D}} 23 \cdot 96, R_{\mathrm{F}} 24 \cdot 24, R_{\mathbf{G}^{\prime}} 24 \cdot 44 ; M n_{\mathrm{D}}^{20^{\circ}} 102 \cdot 46$. Densities determined : $d_{4^{\circ}}^{2 \circ^{\circ}} 0.7414, d_{4^{\circ}}^{41 \cdot 1^{\circ}}$ $0.7222, d_{4}^{62 \cdot 0^{\circ}}{ }_{0} 0.7020$.

| $19.2^{\circ}$ | $13 \cdot 11$ | 0.7421 | 24.03 | 218.2 | $40.8^{\circ}$ | $12 \cdot 16$ | 0.7225 | $21 \cdot 70$ | $218 \cdot 7$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 27.9 | 12.78 | 0.7341 | 23.17 | $218 \cdot 6$ | 61.7 | 11.12 | 0.7023 | 19.29 | $218 \cdot 7$ |
|  |  |  |  |  |  |  |  | Mean 218.6 |  |

505. isoButylamine. B. p. $67 \cdot 5^{\circ} / 753 \mathrm{~mm} . ; M 73 \cdot 14 ; n_{\mathrm{C}} 1 \cdot 39485, n_{\mathrm{D}} 1 \cdot 39700, n_{\mathrm{F}} 1 \cdot 40223, n_{\mathrm{G}^{\prime}} 1 \cdot 40601$; $R_{\mathrm{O}} 23 \cdot 87, R_{\mathrm{D}} 23.98, R_{\mathrm{F}} 24 \cdot 26, R_{\mathbf{G}^{\prime}} 24 \cdot 46 ; M n_{\mathrm{D}}^{20^{\circ}} 102 \cdot 18$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7346, d_{4^{4}}^{4 .} 7^{\circ} 0 \cdot 7143$, $d_{4}^{60.1^{\circ}} 0.6952$. Apparatus $D$.

| $19.7^{\circ}$ | 12.26 | 0.7349 | 22.25 | 216.3 | $41.4^{\circ}$ | 11.31 | 0.7136 | 19.93 | 216.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| 24.5 | 12.14 | 0.7302 | 21.89 | 216.8 | 61.2 | 10.39 | 0.6941 | 17.81 | $217 \cdot 1$ |
| 25.5 | 12.06 | 0.7290 | 21.71 | 216.7 |  |  |  | Mean 216.6 |  |

506. sec.-Butylamine. B. p. $63 \cdot 5^{\circ} / 764 \mathrm{~mm} . ; \quad$ M $73 \cdot 14$; $n_{\mathrm{G}} 1 \cdot 39107, n_{\mathrm{D}} 1 \cdot 39320, n_{\mathrm{F}} 1 \cdot 39843, n_{\mathrm{G}^{\prime}}$ $1.40217 ; R_{\mathrm{a}} 23.99, R_{\mathrm{D}} 24 \cdot 10, R_{\mathrm{F}} 24 \cdot 38, R_{G^{\prime}} 24 \cdot 59 ; M n_{\mathrm{D}}^{20^{\circ}} 101 \cdot 90$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.7246$, $d_{4^{\circ}}^{41 \cdot 0^{\circ}} 0.7051$. Apparatus $A$.

| $21.0^{\circ}$ | 15.86 | 0.7237 | 21.49 | 217.8 | $41.3^{\circ}$ | 14.67 | 0.7048 | 19.36 | $218 \cdot 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 27.4 | 15.56 | 0.7177 | 20.91 | 218.2 |  |  |  | Mean $218 \cdot 1$ |  |

50\%. n-Amylamine. B. p. $104 \cdot 5^{\circ} / 761 \mathrm{~mm} . ; ~ M 87 \cdot 16 ; n_{\mathrm{C}} 1.40928, n_{\mathrm{D}} 1.41147, n_{\mathrm{F}} 1.41688, n_{G^{\prime}}$ $1.42070 ; R_{\mathrm{C}} 28.58, R_{\mathrm{D}} 28.72, R_{\mathrm{F}} 29.05, R_{\mathbf{G}^{\prime}} 29.28 ; M n_{\mathrm{D}}^{20^{\circ}} 123.02$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.7544$, $d_{4}^{42 \cdot 0^{\circ}} 0 \cdot 7343, d_{4 \cdot}^{6 \cdot 3^{\circ}} 0.7170, d_{4}^{86 \cdot 0^{\circ}}{ }_{0} \cdot 6966$. Apparatus $D$.

| $20 \cdot 1^{\circ}$ | 13.53 | 0.7543 | $25 \cdot 20$ | 258.9 | $63 \cdot 5^{\circ}$ | 11.74 | 0.7159 | 20.76 | $260 \cdot 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $22 \cdot 4$ | $13 \cdot 45$ | 0.7524 | $24 \cdot 99$ | $259 \cdot 0$ | $87 \cdot 1$ | 10.68 | 0.6956 | $18 \cdot 35$ | $260 \cdot 0$ |
| $42 \cdot 1$ | $12 \cdot 62$ | 0.7342 | $22 \cdot 88$ | $259 \cdot 6$ |  |  |  | Mean 259.5 |  |

508. iso Amylamine. B. p. 96.5- $97.5^{\circ} / 767 \mathrm{~mm} . ; \quad M 87 \cdot 16 ; n_{\mathrm{D}} 1.40611, n_{\mathrm{D}} 1 \cdot 40830, n_{\mathrm{F}} 1.41366$, $n_{\mathrm{G}^{\prime}} 1.41741 ; R_{\mathrm{G}} 28.58, R_{\mathrm{D}} 28.72, R_{\mathrm{F}} 29.06, R_{\mathrm{G}^{\prime}} 29 \cdot 28 ; M n_{\mathrm{D}}^{20^{\circ}} 122.75$. Densities determined: $d_{4^{20}}{ }^{\circ}$ $0.7491, d_{4^{\circ}}^{40.9} 0.7315, d_{4^{\circ}}^{81 \cdot 4^{\circ}} 0.7129, d_{4^{\circ}}^{86.8^{\circ}} 0.6890$. Apparatus $D$

| $25 \cdot 3^{\circ}$ | 12.67 | 0.7445 | $23 \cdot 30$ | $257 \cdot 2$ | $62 \cdot 0^{\circ}$ | $11 \cdot 10$ | 0.7122 | $19 \cdot 52$ | $257 \cdot 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $29 \cdot 4$ | $12 \cdot 48$ | 0.7403 | 22.82 | $257 \cdot 3$ | $87 \cdot 6$ | 10.03 | 0.6883 | $17 \cdot 05$ | $257 \cdot 9$ |
| $43 \cdot 1$ | 11.97 | 0.7296 | 21.57 | $257 \cdot 4$ |  |  |  | Mean $257 \cdot 5$ |  |

509. n -Hexylamine. B. p. $130^{\circ} / 762 \mathrm{~mm} . ; M 101 \cdot 19 ; n_{\mathrm{C}} 1 \cdot 41579, n_{\mathrm{D}} 1 \cdot 41801, n_{\mathrm{F}} 1 \cdot 42340, n_{G^{\prime}}$ $1.42750 ; R_{\mathrm{C}} 33.14, R_{\mathrm{D}} 33 \cdot 29, R_{\mathrm{F}} 33 \cdot 67, R_{\mathrm{a}^{\prime}} 33.95 ; M n_{\mathrm{D}}^{20^{\circ}} 143.49$. Densities determined : $d_{4^{20}}^{20^{\circ}} 0.7660$, $d_{4^{\circ}}^{41 \cdot 3^{\circ}} 0.7481, d_{4^{\circ}}^{60 \cdot 6^{\circ}} 0.7322, d_{4^{\circ}}^{85 \cdot 6^{\circ}} 0 \cdot 7106$. Apparatus $C$.

| $13 \cdot 0^{\circ}$ | 14.69 | 0.7719 | 26.92 | $298 \cdot 6$ | $60 \cdot 6^{\circ}$ | $12 \cdot 73$ | 0.7322 | $22 \cdot 13$ | $299 \cdot 7$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $40 \cdot 5$ | 13.64 | 0.7488 | 24.25 | 299.9 | $86 \cdot 6$ | 11.54 | 0.7098 | $19 \cdot 45$ | $299 \cdot 4$ |
|  |  |  |  |  |  |  |  |  | Mean $299 \cdot 4$ |

1830 Vogel: Physical Properties and Chemical Constitution.
510. n-Heptylamine. B. p. $153.5^{\circ} / 762 \mathrm{~mm} . ; M 115 \cdot 22$; $n_{\mathrm{C}} 1.42225, n_{\mathrm{D}} 1.42451, n_{\mathrm{F}} 1.42994, n_{\mathrm{G}}$ $1.43398 ; R_{\mathrm{G}} 37.79, R_{\mathrm{D}} 37 \cdot 96, R_{\mathrm{F}} 38 \cdot 38, R_{G^{\prime}} 38 \cdot 70 ; M n_{\mathrm{D}}^{20^{\circ}} 164 \cdot 13$. Densities determined: $d_{40^{2}}{ }^{\circ} 0.7754$, $d_{4}^{40 \cdot 0} 0^{\circ} 0 \cdot 7601, d_{4}^{59 \cdot 5^{\circ}} 0 \cdot 7443, d_{4}^{84 \cdot 7^{\circ}} 0 \cdot 7244$.

The compound does not wet glass and erratic results were obtained in the surface-tension measurements.
511. n-Octylamine. B. p. $176 \cdot 5^{\circ} / 763 \mathrm{~mm}$.; $M 129.24$; $n_{\mathrm{G}} 1.42694, n_{\mathrm{D}} 1.42922, n_{\mathrm{F}} 1.43471, n_{\mathrm{a}^{\prime}}$, $1 \cdot 43890 ; R_{\mathrm{C}} 42 \cdot 43, R_{\mathrm{D}} 42 \cdot 63, R_{\mathrm{F}} 43 \cdot 11, R_{\mathbf{G}^{\prime}} 43 \cdot 47$; $M n_{\mathrm{D}}^{20^{\circ}} 184 \cdot 71$. Density determined : $d_{4^{\circ}}^{20^{\circ}} 0.7819$. The surface tension results were erratic.
512. Allylamine. B. p. $54 \cdot 5^{\circ} / 758 \mathrm{~mm}$.; $M 57 \cdot 10$; $n_{\mathrm{D}} \mathrm{l} \cdot 41747$, $n_{\mathrm{D}} 1 \cdot 42051, n_{\mathrm{F}} 1 \cdot 42792$, $n_{\mathrm{G}}, 1 \cdot 43363$; $R_{\mathrm{C}} 18 \cdot 86, R_{\mathrm{D}} 18 \cdot 98, R_{\mathrm{F}} 19 \cdot 27, R_{\mathbf{G}^{\prime}} 19 \cdot 50 ; M n_{\mathrm{D}}^{20^{\circ}} 81 \cdot 11$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7621, d_{4^{\circ}}^{41 \cdot 3^{\circ}} 0 \cdot 7407$. Apparatus $A$.

| $t$. | $H$. | $d_{4^{\circ}}{ }^{\circ}$. | $\gamma$. | $P$. | $t$. | $H$. | $d_{40}^{t^{\circ}}$. | $\gamma$. | $P$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $24 \cdot 5^{\circ}$ | $17 \cdot 11$ | 0.7576 | $24 \cdot 27$ | $167 \cdot 4$ | $31 \cdot 1^{\circ}$ | 16.76 | 0.7510 | $23 \cdot 57$ | $167 \cdot 7$ |
| $28 \cdot 3$ | $16 \cdot 91$ | 0.7538 | 23.87 | 167.5 | $41 \cdot 6$ | $15 \cdot 94$ | 0.7404 | $22 \cdot 10$ | $167 \cdot 5$ |

513. Ethylenediamine. B. p. $117^{\circ} / 750 \mathrm{~mm} . ; \quad M 60 \cdot 10 ; n_{\mathrm{C}} 1.45399, n_{\mathrm{D}} 1 \cdot 45677, n_{\mathrm{F}} 1.46344, n_{\mathbf{G}}$. $1.46869 ; R_{\mathrm{C}} 18.13, R_{\mathrm{D}} 18.23, R_{\mathrm{F}} 18.45, R_{\mathrm{G}^{\prime}} 18.64 ; M n_{\mathrm{D}}^{20^{\circ}} 87.55$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.8977$, $d_{4}^{40 \cdot 7^{\circ}} 0.8799, d_{4^{6} \cdot 6^{\circ}} 0.8615, d_{4^{4}}^{8 \cdot \circ^{\circ}} 0.8400$. Apparatus $D$.

| $21.3^{\circ}$ | 18.88 | 0.8966 | 41.80 | 170.4 | $63.1^{\circ}$ | 16.92 | 0.8593 | 35.91 | 171.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40.7 | 17.99 | 0.8799 | 39.09 | 170.8 | 86.1 | 15.82 | 0.8384 | 32.75 | 171.7 |

Mean $171 \cdot 0$
514. Aniline. B. p. $184 \cdot 5^{\circ} / 750 \mathrm{~mm} . ; \quad$ M $93 \cdot 13$; $n_{\mathrm{C}} 1.57865, n_{\mathrm{D}} 1.58547, n_{\mathrm{F}} 1.60343 ; R_{\mathrm{D}} 30 \cdot 27$, $R_{\mathrm{D}} 30 \cdot 56, R_{\mathrm{F}} 31 \cdot 31 ; M n_{\mathrm{D}}^{20^{\circ}} 147 \cdot 66$. Densities determined: $d_{40^{\circ}}^{20{ }^{\circ}} 1 \cdot 0221, d_{4^{4} \cdot 2^{\circ}} 1 \cdot 0052, d_{4}^{60 \cdot 1^{\circ}} 0 \cdot 9889, d_{4 \cdot}^{86 \cdot 0^{\circ}}$ 0.9669 . Apparatus $A$.

| $19 \cdot 6^{\circ}$ | 20.88 | 1.0224 | 39.97 | $229 \cdot 1$ | $61 \cdot 3^{\circ}$ | $19 \cdot 23$ | 0.9879 | $35 \cdot 57$ | $230 \cdot 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $40 \cdot 0$ | $20 \cdot 05$ | $1 \cdot 0050$ | $37 \cdot 73$ | $229 \cdot 7$ | $85 \cdot 8$ | $18 \cdot 35$ | 0.9671 | $33 \cdot 23$ | $231 \cdot 2$ |

Mean $230 \cdot 1$
The surface-tension measurements were not altogether satisfactory and will be repeated by the method of maximum bubble pressure.
515. Benzylamine. B. p. $185^{\circ} / 767 \mathrm{~mm} . ; M 107 \cdot 15 ; n_{\mathrm{C}} 1 \cdot 53895, n_{\mathrm{D}} 1 \cdot 54380, n_{\mathrm{F}} 1 \cdot 55656, n_{\mathrm{G}^{\prime}} 1 \cdot 56656$; $R_{\mathrm{C}} 34 \cdot 20, R_{\mathrm{D}} 34 \cdot 45, R_{\mathrm{F}} 35 \cdot 12, R_{\mathrm{G}^{\prime}} 35 \cdot 64 ; M n_{\mathrm{D}}^{20^{\circ}} 165 \cdot 45$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 9816, d_{4^{\circ}}^{42 \cdot 0^{\circ}}$ $0.9653, d_{4^{6}}^{61 \cdot 0^{\circ}} 0.9489, d_{4}^{86 \cdot 6^{\circ}} 0.9272$. Apparatus $D$.

| $21 \cdot 1^{\circ}$ | 16.44 | 0.9807 | 39.82 | $274 \cdot 4$ | $62 \cdot 4^{\circ}$ | 14.82 | 0.9478 | $34 \cdot 69$ | $274 \cdot 4$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $41 \cdot 9$ | 15.62 | 0.9654 | 37.24 | $274 \cdot 2$ | 88.0 | 13.86 | 0.9261 | 31.70 | $274 \cdot 5$ |

Mean $274 \cdot 4$
516. cycloHexylamine. B. p. $133^{\circ} / 756 \mathrm{~mm}$.; $M 99 \cdot 17$; $n_{\mathrm{O}} 1 \cdot 45665, n_{\mathrm{D}} 1 \cdot 45926, n_{\mathrm{F}} 1 \cdot 46539, n_{\mathbf{G}^{\prime}}$ $1.47001 ; R_{\mathrm{G}} 31 \cdot 13, R_{\mathrm{D}} 31 \cdot 29, R_{\mathrm{F}} 31 \cdot 64, R_{\mathrm{G}^{\prime}} 31 \cdot 91 ; M n_{\mathrm{D}}^{20^{\circ}} 144 \cdot 72$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.8671$, $d_{4}^{40 \cdot 6^{\circ}} 0 \cdot 8498, d_{4}^{62 \cdot 3^{\circ}} 0.8307, d_{4}^{85 \cdot} 3^{\circ} 0 \cdot 8106$. Apparatus $A$.

| $16 \cdot 2^{\circ}$ | 19.80 | 0.8703 | 32.27 | $271 \cdot 6$ | $41 \cdot 1^{\circ}$ | $18 \cdot 43$ | 0.8494 | $29 \cdot 31$ | $271 \cdot 7$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $17 \cdot 9$ | $19 \cdot 70$ | 0.8689 | 32.05 | $271 \cdot 6$ | $61 \cdot 2$ | $17 \cdot 20$ | $0 \cdot 8316$ | $26 \cdot 78$ | $271 \cdot 3$ |
| $22 \cdot 9$ | 19.48 | 0.8646 | 31.54 | $271 \cdot 8$ | $87 \cdot 0$ | $15 \cdot 80$ | $0 \cdot 8091$ | $23 \cdot 94$ | $271 \cdot 1$ |
|  |  |  |  |  |  |  |  | Mean $271 \cdot 5$ |  |

517. Diethylamine. B. p. $55^{\circ} / 756 \mathrm{~mm} . ; M^{\circ} 73 \cdot 14 ; n_{\mathrm{D}} 1 \cdot 38417, n_{\mathrm{D}} 1 \cdot 38637, n_{\mathrm{F}} 1 \cdot 39167, n_{\mathrm{G}}, 1 \cdot 39560$ $R_{\mathrm{C}} 24 \cdot 18, R_{\mathrm{D}} 24 \cdot 30, R_{\mathrm{F}} 24 \cdot 60, R_{\mathrm{G}^{\prime}} 24 \cdot 82 ; M n_{\mathrm{D}}^{20^{\circ}} 101 \cdot 40$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7074, d_{4^{\circ}}^{41 \cdot 5^{\circ}} 0 \cdot 6849$. Apparatus $A^{*}$, Apparatus $D^{* *}$.

| $24.9^{\circ}$ | $15 \cdot 14$ | 0.7023 | 19.91 | $220.3^{*}$ | $23 \cdot 8^{\circ}$ | 11.59 | 0.7034 | $20 \cdot 13$ | $220 \cdot 6^{* *}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $41 \cdot 0$ | 14.05 | 0.6852 | 18.03 | $220.4^{*}$ | $41 \cdot 3$ | 10.60 | 0.6851 | 17.93 | $220 \cdot 2^{* * *}$ |
| 16.4 | 11.79 | 0.7114 | 20.71 | $220 \cdot 1^{* *}$ |  |  |  | Mean $220 \cdot 3$ |  |

518. Di-n-propylamine. B. p. $108^{\circ} / 751 \mathrm{~mm}$. $M 101 \cdot 19 ; n_{\mathrm{C}} 1 \cdot 40278, n_{\mathrm{D}} 1 \cdot 40499, n_{\mathrm{F}} 1441039$, $n_{G^{\prime}} 1 \cdot 41425 ; R_{\mathrm{C}} 33 \cdot 36, R_{\mathrm{D}} 33 \cdot 51, R_{\mathrm{F}} 33 \cdot 91, R_{\mathbf{G}^{\prime}} 34 \cdot 19 ; M n_{\mathrm{D}}^{200^{\circ}} 142 \cdot 17$. Densities determined: $d_{4^{20}}^{20^{\circ}}$ $0.7400, d_{4^{41} \cdot 1^{\circ}}^{0} 0.7213, d_{4^{39} \cdot 9^{\circ}}^{0} 0.7043, d_{4}^{86 \cdot 1^{F}} 0 \cdot 6798$. Apparatus $A$.

| $16 \cdot 9^{\circ}$ | $16 \cdot 63$ | $0 \cdot 7428$ | $23 \cdot 13$ | $298 \cdot 8$ | $61 \cdot 7^{\circ}$ | $14 \cdot 05$ | 0.7027 | $18 \cdot 49$ | $298 \cdot 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $24 \cdot 5$ | $16 \cdot 17$ | $0 \cdot 7359$ | $22 \cdot 28$ | $298 \cdot 7$ | $85 \cdot 2$ | $12 \cdot 67$ | 0.6806 | $16 \cdot 15$ | $298 \cdot 7$ |
| $41 \cdot 3$ | $15 \cdot 38$ | $0 \cdot 7211$ | $20 \cdot 77$ | $299 \cdot 5$ |  |  |  | Mean $298 \cdot 9$ |  |

519. Diisopropylamine. B. p. $83 \cdot 5^{\circ} / 765 \mathrm{~mm} . ; \quad M 101 \cdot 19$; $n_{\mathrm{C}} 1 \cdot 39021, n_{\mathrm{D}} 1 \cdot 39236, n_{\mathrm{F}} 1 \cdot 39762$, $n_{\mathrm{G}^{\prime}} 1 \cdot 40177 ; R_{\mathrm{G}} 33 \cdot 48, R_{\mathrm{D}} 33 \cdot 64, R_{\mathrm{F}} 34 \cdot 04, R_{\mathbf{G}^{\prime}} 34 \cdot 35 ; ~ M n_{\mathrm{D}}^{20^{\circ}} 140 \cdot 90$. Densities determined : $d_{4^{\circ}}{ }^{\circ} 0.7169$, $d_{4}^{4} \cdot 2^{\circ} 0 \cdot 6980, d_{4^{\circ}}^{61 \cdot 4^{\circ}} 0 \cdot 6781$. Apparatus $A$.

| $16.0^{\circ}$ | 14.85 | 0.7206 | 20.04 | $297 \cdot 1$ | $41 \cdot 5^{\circ}$ | 13.27 | 0.6977 | 17.34 | 296.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 26.3 | 14.35 | 0.7111 | 19.11 | 297.5 | 61.5 | 11.98 | 0.6777 | $15 \cdot 20$ | $295 \cdot 6$ |
|  |  |  |  |  |  |  |  |  | Mean 296.6 |

520. Di-n-butylamine. B. p. $159^{\circ} / 761 \mathrm{~mm} . ; M 129.24 ; n_{\mathrm{G}} 1.41539, n_{\mathrm{D}} 1.41766, n_{\mathbf{P}} 1.42310, n_{\mathbf{G}^{\prime}}$ $1.42725 ; R_{\mathrm{C}} 42 \cdot 61, R_{\mathrm{D}} 42 \cdot 82, R_{\mathrm{F}} 43 \cdot 30, R_{\mathbf{G}^{\prime}} 43 \cdot 68 ; M n_{4}^{20^{\circ}} 183 \cdot 22$. Densities determined : $d_{40^{20}}{ }^{\circ} 0.7601$, $d_{4^{\circ}}^{41 \cdot 7^{\circ}} 0 \cdot 7435, d_{4^{\circ}}^{61 \cdot 0^{\circ}} 0.7277, d_{4^{84 \cdot 9^{\circ}}} 0 \cdot 7081$. Apparatus $A$.

| $t$. | $H$. | $d_{4^{\circ}}{ }^{\circ}$ | $\gamma$. | $P$. | $t$. | $H$. | $d_{4^{\circ}}{ }^{\circ}$ | $\gamma$. | $P$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $17 \cdot 7^{\circ}$ | $17 \cdot 39$ | $0 \cdot 7619$ | $24 \cdot 81$ | $378 \cdot 6$ | $60 \cdot 4^{\circ}$ | $15 \cdot 19$ | $0 \cdot 7282$ | $20 \cdot 71$ | $378 \cdot 6$ |
| $40 \cdot 9$ | $16 \cdot 24$ | $0 \cdot 7441$ | $22 \cdot 63$ | $378 \cdot 8$ | $86 \cdot 2$ | $13 \cdot 84$ | $0 \cdot 7071$ | $18 \cdot 32$ | $378 \cdot 6$ |
|  |  |  |  |  |  |  |  | Mean $378 \cdot 7$ |  |

521. Diisobutylamine. B. p. $137^{\circ} / 742 \mathrm{~mm}$.; $M 129.24$; $n_{\mathrm{g}} 1 \cdot 40679, n_{\mathrm{D}} 1 \cdot 40900, n_{\mathrm{F}} 1 \cdot 41448, n_{\mathrm{G}}$ $1.41831 ; R_{\mathrm{G}} 42 \cdot 63, R_{\mathrm{D}} 42 \cdot 83, R_{\mathrm{F}^{\circ}} 43 \cdot 34, R_{\mathrm{G}^{\prime}} 43 \cdot 70 ; M n_{\mathrm{D}}^{20^{\circ}} 182 \cdot 10$. Densities determined: $a_{4}^{20}$ $0 \cdot 7460, d_{4^{\circ}}^{40 \cdot 8^{\circ}} 0.7297, d_{4^{\circ}}^{62 \cdot 0^{\circ}} 0 \cdot 7128, d_{4^{\circ}}^{86 \cdot 3^{\circ}} 0 \cdot 6906$. Apparatus $D$.

| $15 \cdot 1^{\circ}$ | $12 \cdot 19$ | 0.7499 | $22 \cdot 58$ | $375 \cdot 7$ | $60 \cdot 2^{\circ}$ | $10 \cdot 44$ | 0.7142 | $18 \cdot 42$ | $374 \cdot 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- |
| $23 \cdot 9$ | $11 \cdot 93$ | 0.7429 | 21.89 | $376 \cdot 3$ | $86 \cdot 7$ | 9.46 | 0.6903 | $16 \cdot 13$ | $375 \cdot 2$ |
| 40.8 | 11.26 | 0.7297 | 20.29 | $375 \cdot 9$ |  |  |  | Mean $375 \cdot 6$ |  |

522. Di-sec.-butylamine. B. p. $135^{\circ} / 765 \mathrm{~mm}$. ; $M 129.24$; $n_{\mathrm{O}} 1.40875, n_{\mathrm{D}} 1.41092, n_{\mathrm{F}} 1.41624$, $n_{G^{*}} 1 \cdot 42017 ; R_{\mathrm{G}} 42 \cdot 39, R_{\mathrm{D}} 42 \cdot 58, R_{\mathrm{F}} 43 \cdot 06, R_{\mathrm{G}^{\prime}} 43 \cdot 43 ; M n_{\mathrm{D}}^{20^{\circ}} 182 \cdot 34$. Densities determined : $d_{4}^{20^{\circ}} 0 \cdot 7534$, $d_{4}^{4} \cdot{ }^{4} \cdot 8^{\circ} 0.7362, d_{4^{6}}^{61 \cdot 0^{\circ}} 0.7192, d_{4^{8}}^{85 \cdot 1^{\circ}} 0 \cdot 6989$. Apparatus $D$.

| $14 \cdot 6^{\circ}$ | 12.41 | 0.7579 | 23.28 | 374.4 | $40.9^{\circ}$ | 11.36 | 0.7361 | 20.65 | $374 \cdot 3$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 22.0 | 12.09 | 0.7518 | 22.45 | $374 \cdot 2$ | 60.6 | 10.49 | 0.7195 | $18 \cdot 64$ | $373 \cdot 2$ |

Mean 374.0
523. Di-n-amylamine. B. p. $67^{\circ} / 4 \mathrm{~mm}$.; $M 157 \cdot 29$; $n_{\mathrm{D}} 1 \cdot 42494$, $n_{\mathrm{D}} 1 \cdot 42722, n_{\mathrm{F}} 1 \cdot 43280, n_{\mathrm{G}} 1 \cdot 43679$; $R_{\mathrm{G}} 51.74, R_{\mathrm{D}} 51 \cdot 99, R_{\mathrm{F}} 52.58, R_{\mathbf{G}^{\prime}} 53.01 ; M n_{\mathrm{D}}^{20^{\circ}} 224 \cdot 48$. Densities determined : $d_{4^{20}}{ }^{20^{\circ}} 0.7771, d_{4^{6}}^{6.8^{\circ}} 0.7456$, $d_{4^{8.0^{\circ}}}^{86} 0.7269, d_{4^{19}}^{198^{\circ}} 0.7018$. Apparatus $A$.

| $14 \cdot 1^{\circ}$ | $18 \cdot 20$ | $0 \cdot 7816$ | $26 \cdot 64$ | $457 \cdot 2$ | $87 \cdot 4^{\circ}$ | $14 \cdot 82$ | $0 \cdot 7258$ | $20 \cdot 14$ | $459 \cdot 1$ |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| $25 \cdot 9$ | $17 \cdot 83$ | $0 \cdot 7726$ | $25 \cdot 79$ | $458 \cdot 8$ | $121 \cdot 1$ | $13 \cdot 21$ | $0 \cdot 7008$ | $17 \cdot 34$ | $458 \cdot 0$ |
| $60 \cdot 4$ | $16 \cdot 04$ | $0 \cdot 7459$ | $22 \cdot 40$ | $458 \cdot 8$ |  |  |  | Mean $458 \cdot 6$ |  |

524. Diisoamylamine. B. p. 186- $186.5^{\circ} / 756 \mathrm{~mm}$.; $M 157 \cdot 29$; $n_{\mathrm{O}} 1 \cdot 42119, n_{\mathrm{D}} 1 \cdot 42346, n_{\mathrm{F}} 1 \cdot 42899$, $n_{\mathrm{G}^{\cdot}} 1 \cdot 43301 ; R_{\mathrm{C}} 51 \cdot 77, R_{\mathrm{D}} 52.02, R_{\mathrm{F}} 52 \cdot 61, R_{\mathrm{G}^{\prime}} 53.04 ; M n_{\mathrm{D}}^{20^{\circ}} 223.90$. Densities determined: $d_{4^{\circ}}^{20}$ $0.7708, d_{4^{40}}{ }^{\circ} \cdot 7^{\circ}{ }_{0.7552} d_{4}^{60 \cdot 1^{\circ}}{ }^{\circ} \cdot 7405, d_{4}^{85 \cdot 5^{\circ}} 0.7213$. Apparatus $D$.

| $14.2{ }^{\circ}$ | 12.92 | 0.7752 | 24.73 | 452.5 | $60.4{ }^{\circ}$ | 11.35 | $0 \cdot 7403$ | 20.75 | $453 \cdot 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $23 \cdot 3$ | 12.76 | 0.7683 | $24 \cdot 21$ | 454•1 | 86.5 | $10 \cdot 50$ | $0 \cdot 7205$ | 18.68 | 453.9 |
| $40 \cdot 5$ | 12.08 | 0.7554 | $22 \cdot 54$ | $453 \cdot 7$ |  |  |  |  | 453 |

525. Dicyclohexylamine. B. p. $113.5^{\circ} / 9 \mathrm{~mm} . ; \quad$. $181.31 ; n_{\mathrm{D}} 1.48194, n_{\mathrm{D}} 1 \cdot 48454, n_{\mathrm{F}} 1.49080$, $n_{\mathbf{G}^{\circ}} 1 \cdot 49560 ; R_{\mathrm{G}} 56 \cdot 65, R_{\mathrm{D}} 56 \cdot 91, R_{\mathrm{F}} 57 \cdot 54, R_{\mathbf{G}^{\prime}} 58 \cdot 02 ; M n_{\mathrm{D}}^{20^{\circ}} 269 \cdot 15$. Densities determined: $d_{4^{20}}^{20^{\circ}}$ $0.9123, d_{4^{40}}{ }^{\circ} 0 \cdot 8978, d_{4^{\circ}}^{60 \cdot 1^{\circ}} 0 \cdot 8842, d_{4}^{85} \cdot 3^{\circ} 0 \cdot 8662$. Apparatus $A$.

| $15 \cdot 1^{\circ}$ | $15 \cdot 13$ | 0.9157 | $34 \cdot 22$ | 478.9 | $60 \cdot 5^{\circ}$ | $13 \cdot 61$ | 0.8839 | $29 \cdot 71$ | 478.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $20 \cdot 4$ | $14 \cdot 99$ | 0.9120 | 33.76 | $479 \cdot 2$ | 87.9 | 12.74 | 0.8644 | $27 \cdot 20$ | $479 \cdot 0$ |
| $40 \cdot 4$ | 14.32 | 0.8970 | 31.75 | $479 \cdot 4$ |  |  |  | Mean $479 \cdot 1$ |  |

526. Ethyl N-methylcarbamate. B. p. $169 \cdot 5^{\circ} / 769 \mathrm{~mm} . ; M 103 \cdot 18 ; n_{\mathbf{O}} 1.41594, n_{\mathrm{D}} 1 \cdot 41826, n_{\mathrm{r}}$ $1.42386, n_{G^{\circ}} 1.42798 ; R_{\mathrm{C}} 25 \cdot 59, R_{\mathrm{D}} 25.73, R_{\mathrm{F}} 26 \cdot 03, R_{\mathrm{G}^{\prime}} 26 \cdot 25 ; M n_{\mathrm{D}}^{20^{\circ}} 146 \cdot 34$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 0115, d_{4^{4}}^{41 \cdot 2^{\circ}} 0.9924, d_{4^{6}}^{61 \cdot 1^{\circ}} 0.9744, d_{4^{8.5}}{ }^{56} 0.9503$. Apparatus $D$.

| $23.0^{\circ}$ | 12.99 | 1.0088 | 32.36 | $242 \cdot 6$ | $61.0^{\circ}$ | 11.85 | 0.9745 | $28 \cdot 52$ | $244 \cdot 7$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: | ---: |
| 25.4 | 12.92 | 1.0066 | 32.12 | $244 \cdot 0$ | $86 \cdot 1$ | 11.04 | 0.9507 | $25 \cdot 92$ | 244.9 |
| 40.9 | 12.44 | 0.9927 | 29.80 | 242.9 |  |  |  | Mean 243.8 |  |

527. Ethyl N-ethylcarbamate. B. p. $175^{\circ} / 748 \mathrm{~mm}$. ; $M 117 \cdot 15$; $n_{\mathrm{C}} 1 \cdot 41919, n_{\mathrm{D}} 1.42151, n_{\mathrm{F}} 1.42713$, $n_{G^{\prime}} 1.43126 ; R_{\mathrm{G}} 30 \cdot 25, R_{\mathrm{D}} 30 \cdot 40, R_{\mathrm{F}} 30 \cdot 75, R_{\mathcal{G}^{\prime}} 31 \cdot 01 ; M n_{\mathrm{D}}^{20^{\circ}} 166 \cdot 53$. Densities determined : $d_{4^{\prime}}^{20}$ $0.9784, d_{4^{4} \cdot 6^{\circ}} 0.9593, d_{4^{\circ}}^{60 \cdot 4^{\circ}} 0.9425, d_{4}^{86 \cdot 55^{\circ}} 0.9177$. Apparatus $A$.

| $21 \cdot 1^{\circ}$ | 16.54 | 0.9774 | 30.27 | $281 \cdot 1$ | $61 \cdot 3^{\circ}$ | $14 \cdot 91$ | 0.9417 | 26.29 | $281 \cdot 7$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41.7 | 15.73 | 0.9592 | 28.25 | 281.6 | 86.9 | 14.00 | 0.9173 | $24 \cdot 05$ | $282 \cdot 8$ |
|  |  |  |  |  |  |  |  |  | Mean 281.7 |

528. N-Nitrosomethylaniline. B. p. $120^{\circ} / 13 \mathrm{~mm} . ; \quad$ ( $136 \cdot 15$; $n_{\mathrm{C}} 1.56992, n_{\mathrm{D}} 1 \cdot 57764, n_{\mathrm{F}} 1.59901$ (line rather faint); $R_{\mathrm{D}} 39 \cdot 54, R_{\mathrm{D}} 39 \cdot 97, R_{\mathrm{F}} 41 \cdot 18 ; M n_{4^{\circ}}^{20^{\circ}} 214 \cdot 79$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 1 \cdot 1297$ $d_{4^{\circ}}^{41 \cdot 4^{\circ}} 1 \cdot 1113, d_{4^{\circ}}^{61 \cdot 5^{\circ}} 1 \cdot 0941, d_{4}^{86 \cdot 9^{\circ}} 1 \cdot 0722$. Apparatus $D$.

| $18 \cdot 8^{\circ}$ | 16.23 | $1 \cdot 1307$ | 45.32 | 312.4 | $60.9^{\circ}$ | $14 \cdot 94$ | 1.0946 | 40.39 | 313.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41.0 | 15.51 | $1 \cdot 1116$ | 42.58 | $312 \cdot 9$ | 87.3 | $14 \cdot 10$ | 1.0719 | 37.33 | 313.9 |
|  |  |  |  |  |  |  |  | Mean $313 \cdot 2$ |  |

529. Monomethylaniline. B. p. $193^{\circ} / 738 \mathrm{~mm} . ; \quad M 107 \cdot 15$; $n_{\mathrm{o}} 1.56411, n_{\mathrm{D}} 1.57094, n_{\mathrm{F}} 1.58899$, $n_{G} \cdot 1 \cdot 60447$ (line very faint); $R_{\mathrm{C}} 35 \cdot 32, R_{\mathrm{D}} 35 \cdot 67, R_{\mathrm{F}} 36 \cdot 60, R_{G^{\prime}} 37 \cdot 38 ; M n_{\mathrm{D}}^{20^{\circ}} 168 \cdot 32$. Densities: determined : $d_{4}^{20^{\circ}}{ }^{\circ} 0.9867, d_{4}^{40.22^{\circ}} 0.9707, d_{4 \cdot}^{60 \cdot 3^{\circ}} 0.9555, d_{4}^{85} \cdot 5^{\circ}{ }^{8}{ }_{0.9350}$. Apparatus $A$.

| $12.2^{\circ}$ | 21.97 | 0.9929 | 40.85 | 272.8 | $60.7^{\circ}$ | 19.69 | 0.9558 | 35.24 | 273.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 17.7 | 21.82 | 0.9885 | 40.39 | 273.1 | 86.5 | 18.59 | 0.9342 | 32.52 | 273.9 |
| 40.1 | 20.75 | 0.9708 | 37.72 | 273.5 |  |  |  | Mean 273.3 |  |

530. N-Nitrosoethylaniline. B. p. $131^{\circ} / 20 \mathrm{~mm}$.; $M_{20} 150 \cdot 18 ; n_{\mathrm{d}} 1.55269, n_{\mathrm{D}} 1.55969, n_{\mathrm{F}} 1.57894$ (line rather faint); $R_{\mathrm{D}} 44 \cdot 15, R_{\mathrm{D}} 44 \cdot 61, R_{\mathrm{F}} 45 \cdot 86 ; M n_{\mathrm{D}}^{20^{\circ}} 234 \cdot 24$. Densities determined : $d_{40^{\circ}}^{20} 1 \cdot 0881$, $d_{4^{\circ}}^{40.7^{\circ}} 1 \cdot 0704, d_{40^{\circ}}^{61 \cdot 9^{\circ}} 1 \cdot 0525, d_{4}^{86 \cdot 0^{\circ}} 1 \cdot 0297$. Apparatus $A$.

| $t$. | $H$. | $d_{4}{ }^{10^{\circ}}$. | $\gamma$. | $P$. | $t$. | $H$. | $d_{4}^{\text {d }}$. | $\gamma$. | $P$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $12 \cdot{ }^{\circ}$ | 20.63 | 1.0947 | $42 \cdot 29$ | $349 \cdot 8$ | $61.2^{\circ}$ | 18.62 | 1.0531 | 36.72 | 351.0 |
| $18 \cdot 1$ | $20 \cdot 26$ | 1.0897 | $41 \cdot 54$ | $349 \cdot 9$ | $85 \cdot 8$ | 17•71 | 1.0299 | 34-15 | $352 \cdot 5$ |
| $42 \cdot 4$ | $19 \cdot 44$ | 1.0689 | 38.91 | $350 \cdot 9$ |  |  |  |  | 350 |

531. Monoethylaniline. B. p. $202.5^{\circ} / 750 \mathrm{~mm}$.; $M 121 \cdot 18 ; n_{\mathrm{G}} 1.54738, n_{\mathrm{D}} 1.55397, n_{\mathrm{F}} 1.57030, n_{\mathrm{G}^{\prime}}$ 1.58444 (line rather faint) ; $R_{\mathrm{C}} 40 \cdot 05, R_{\mathrm{D}} 40 \cdot 45, R_{\mathrm{F}} 41 \cdot 43, R_{\mathbf{G}^{\prime}} 42 \cdot 27 ; M n_{\mathrm{D}}^{20^{\circ}} 188 \cdot 32$. Densities determined: $d_{40^{\circ}}^{20^{\circ}} 0.9601, d_{4^{4}}^{41.5^{\circ}} 0.9431, d_{40^{6}}^{61.7^{\circ}} 0.9273, d_{4}^{86.1^{\circ}} 0.9082$. Apparatus $A$.

| $20.5^{\circ}$ | 20.47 | 0.9597 | 36.79 | 311.0 | $62.5^{\circ}$ | 18.57 | 0.9267 | 32.22 | 311.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41.3 | 19.62 | 0.9433 | 34.66 | 311.7 | 87.6 | 17.46 | 0.9074 | 29.67 | 311.7 |
|  |  |  |  |  |  |  |  | Mean 311.5 |  |

532. Mono-n-propylaniline. B. p. $219^{\circ} / 758 \mathrm{~mm}$. and $96^{\circ} / 9 \mathrm{~mm}$.; $M 135 \cdot 20 ; n_{\mathrm{C}} 1 \cdot 53596, n_{\mathrm{D}} 1 \cdot 54217$, $n_{\mathrm{F}} 1 \cdot 55729, n_{\mathrm{G}^{\prime}} 1.56991 ; R_{\mathrm{G}} 44 \cdot 72, R_{\mathrm{D}} 45 \cdot 15, R_{\mathrm{F}} 46 \cdot 19, R_{\mathrm{G}} \cdot 47 \cdot 05 ; \mathrm{Mn}_{\mathrm{D}}^{2 \circ^{\circ}} 208 \cdot 51$. Densities determined : $d_{4^{2}} 0^{\circ} 0.9426, d_{4}^{40} 00^{\circ} 0.9276, d_{4}^{60.1^{\circ}} 0.9119, d_{4}^{85.90^{\circ}} 0.8921$. Apparatus $C$.

| $20.9^{\circ}$ | $15 \cdot 55$ | 0.9419 | 34.77 | $348 \cdot 6$ | $61 \cdot 4^{\circ}$ | $14 \cdot 26$ | 0.9109 | $30 \cdot 84$ | $349 \cdot 8$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41.0 | 14.87 | 0.9268 | 32.72 | $348 \cdot 9$ | $87 \cdot 1$ | 13.45 | 0.8913 | $28 \cdot 46$ | $350 \cdot 4$ |

Mean 349-4
533. Mono-n-butylaniline. B. p. 237-238 $/ 760 \mathrm{~mm}$. and $105^{\circ} / 3 \mathrm{~mm} . ; M 149 \cdot 23 ; n_{\mathrm{D}} 1 \cdot 52803, n_{\mathbf{D}}$ $1.53342, n_{\mathrm{F}} 1.54750, n_{\mathrm{G}^{\prime}} 1.55943 ; R_{\mathrm{G}} 49 \cdot 38, R_{\mathrm{D}} 49 \cdot 80, R_{\mathrm{F}} 50.90, R_{\mathrm{G}^{\prime}} 51 \cdot 81 ; M n_{\mathrm{D}}^{20^{\circ}} 228 \cdot 83$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9305, d_{4^{4} \cdot 0^{\circ}}^{40.9157,} d_{4^{59} \cdot 1^{\circ}} 0.9107, d_{4^{86}}{ }^{6 \cdot 2^{\circ}} 0.8812$. Apparatus $C$.

| $20.9^{\circ}$ | $15 \cdot 36$ | 0.9298 | 33.90 | $389 \cdot 1$ | $59 \cdot 5^{\circ}$ | $14 \cdot 25$ | 0.9014 | $30 \cdot 50$ | $389 \cdot 0$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40.7 | 14.73 | 0.9152 | 32.00 | $387 \cdot 8$ | $86 \cdot 9$ | 13.44 | 0.8807 | $28 \cdot 10$ | $390 \cdot 0$ |

Mean 389.0
534. Triethylamine. B. p. $89 \cdot 5^{\circ} / 759 \mathrm{~mm} . ; \quad M 101 \cdot 19$; $n_{\mathrm{G}} 1 \cdot 39859, n_{\mathrm{D}} 1 \cdot 40101, n_{\mathrm{F}} 1 \cdot 40670$, $n_{\mathbf{G}^{\prime}}$, $1.41099 ; R_{\mathrm{C}} 33.62, R_{\mathrm{D}} 33.79, R_{\mathbf{F}} 34 \cdot 23, R_{\mathbf{G}^{\prime}} 34.54 ; M n_{\mathrm{D}}^{20^{\circ}} 141.77$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.7275$, $d_{4^{\circ}}^{41.7^{\circ}} 0.7087, d_{4}^{60 \cdot 5^{\circ}} 0.6912$. Apparatus $C$.

| $22.3^{\circ}$ | 11.91 | 0.7255 | 20.51 | 296.8 | $62.0^{\circ}$ | 10.12 | 0.6899 | 16.57 | 296.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 42.2 | 10.98 | 0.7083 | 18.46 | 296.5 |  |  |  | Mean 296.7 |  |

535. Tri-n-propylamine. B. p. $156 \cdot 5^{\circ} / 760 \mathrm{~mm}$; $M 143 \cdot 27$; $n_{\mathrm{O}} 141471, n_{\mathrm{D}} 1 \cdot 41706, n_{\mathrm{F}} 1.42279$, $n_{G^{\prime}} 1.42718 ; R_{\mathrm{G}} 47.44, R_{\mathrm{D}} 47 \cdot 68, R_{\mathrm{F}} 48 \cdot 25, R_{\mathrm{G}^{\prime}} 48.69 ; \quad M n_{\mathrm{D}}^{20^{\circ}} 203.03$. Densities determined: $d_{4}^{20^{\circ}}$ $0.7558, d_{44^{4} \cdot 0^{\circ}}^{4 .} 0.7411, d_{4}^{62 \cdot 0^{\circ}} 0.7258, d_{4^{\circ}}^{8.9^{\circ}} 0.7056$. Apparatus $A$.

| $24.5^{\circ}$ | 15.95 | 0.7526 | 22.48 | $414 \cdot 4$ | $60 \cdot 1^{\circ}$ | $14 \cdot 16$ | 0.7271 | $19 \cdot 28$ | $412 \cdot 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 41.3 | 15.05 | 0.7416 | 20.90 | $413 \cdot 1$ | $84 \cdot 3$ | 12.98 | 0.7082 | $17 \cdot 21$ | $412 \cdot 1$ |

Mean 413•1
536. Tri-n-butylamine. B. p. $212^{\circ} / 761 \mathrm{~mm} . ; \quad M 185 \cdot 35$; $n_{\mathrm{C}} 1 \cdot 42727, n_{\mathrm{D}} 1.42967, n_{\mathrm{F}} 1.43547, n_{\mathbf{G}^{\prime}}$ $1.43975 ; R_{\mathrm{O}} 61 \cdot 20, R_{\mathrm{D}} 61 \cdot 50, R_{\mathrm{F}} 62 \cdot 22, R_{G^{\prime}} 62 \cdot 75 ; M n_{\mathrm{D}}^{20^{\circ}} 264.99$. Densities determined : $d_{4^{\circ}}^{20} 0.7781$, $d_{4^{\circ}}^{41 \cdot 4^{\circ}} 0 \cdot 7638, d_{4^{\circ}}^{80 \cdot 0^{\circ}} 0 \cdot 7500, d_{4^{87} \cdot 1^{\circ}}^{8 .} 0 \cdot 7300$. Apparatus $B$.

| $22.9^{\circ}$ | 13.52 | 0.7761 | 24.60 | 531.9 | $61.8^{\circ}$ | 12.17 | 0.7487 | 21.36 | $532 \cdot 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| 42.0 | 12.82 | 0.7634 | 22.91 | 531.4 | 89.9 | 11.13 | 0.7280 | 19.00 | 531.6 |
|  |  |  |  |  |  |  |  | Mean 531.8 |  |

537. Tvi-n-amylamine. B. p. $109^{\circ} / 5 \mathrm{~mm} . ; \quad M 227.42$; $n_{\mathrm{C}} 1.43426, n_{\mathrm{D}} 1.43665, n_{\mathrm{F}} 1.44238, n_{\mathrm{G}^{\prime}}$ $1 \cdot 44666 ; R_{\mathrm{C}} 74 \cdot 94, R_{\mathrm{D}} 75 \cdot 31, R_{\mathrm{F}} 76 \cdot 16, R_{\mathrm{G}^{\prime}} 76 \cdot 80 ; M n_{\mathrm{D}}^{20^{\circ}}: 326 \cdot 73$. Densities determined : $d_{4}^{20{ }^{\circ}} 0 \cdot 7907$, $d_{4 .}^{40.1^{\circ}} 0.7761, d_{4}^{60 \cdot-} 0.7614, d_{4 \cdot}^{86 \cdot 8^{\circ}} 0.7428$. Apparatus $A$.

| $12 \cdot 1^{\circ}$ | 18.01 | 0.7964 | 26.86 | $650 \cdot 1$ | $61 \cdot 1^{\circ}$ | 15.93 | 0.7611 | 22.70 | 652.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 26.4 | 17.53 | 0.7861 | 25.80 | 652.0 | 87.5 | 14.77 | 0.7423 | 20.53 | 652.3 |
| 41.5 | 16.82 | 0.7751 | 24.41 | 652.2 |  |  |  | Mean 651.8 |  |

538. Triisoamylamine. B. p. $94^{\circ} / 4 \mathrm{~mm}$. ; $M 227 \cdot 42$; $n_{\mathrm{C}} \mathrm{l} \cdot 43066, n_{\mathrm{D}} 1 \cdot 43305, n_{\mathrm{F}} 1 \cdot 43875, n_{\mathrm{G}^{\prime}} 1 \cdot 44308$; $R_{\mathrm{C}} 74 \cdot 97, R_{\mathrm{D}} 75 \cdot 33, R_{\mathrm{F}} 76 \cdot 19, R_{\mathbf{G}^{\prime}} 76 \cdot 84 ; n_{\mathrm{D}}^{20{ }^{\circ}} 325 \cdot 92$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0 \cdot 7848, d_{4^{4}}^{40 \cdot 6^{\circ}} 0 \cdot 7700$, $d_{4}^{60 \cdot 5^{\circ}} 0.7557, d_{4}^{86.7^{\circ}} 0.7364$. Apparatus $B$.

| $14.7^{\circ}$ | 13.44 | 0.7886 | 24.85 | 643.9 | $60.7^{\circ}$ | 11.81 | 0.7554 | 20.92 | $643 \cdot 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40.8 | 12.51 | 0.7699 | 22.58 | 643.9 | 86.5 | 10.99 | 0.7365 | 18.98 | 644.5 |
|  |  |  |  |  |  |  |  | Mean $644 \cdot 1$ |  |

539. Benzyldiethylamine. B. p. $209-210^{\circ} / 757 \mathrm{~mm}$. and $125^{\circ} / 12 \mathrm{~mm}$; $M 163.25 ; n_{\mathrm{O}} 1 \cdot 49334$, $n_{\mathrm{D}} 1 \cdot 49734, n_{\mathrm{F}} 1 \cdot 50736, n_{\mathbf{G}^{\prime}} 1 \cdot 51546 ; R_{\mathbf{G}} 53 \cdot 11, R_{\mathrm{D}} 53 \cdot 47, R_{\mathrm{F}} 54 \cdot 39, R_{\mathbf{G}^{\prime}} 55 \cdot 12 ; M n_{\mathrm{D}}^{20^{\circ}} 244 \cdot 43$. Densities determined : $d_{4}^{20{ }^{\circ}} 0.8938, d_{4^{4}}^{4 \cdot 5} 0.8783, d_{4^{\circ}}^{60} \cdot 5^{\circ} 0.8627, d_{4^{\circ}}^{87.5^{\circ}} 0.8416$. Apparatus $F$.

| $18.1^{\circ}$ | 14.44 | 0.8953 | $30 \cdot 10$ | $427 \cdot 1$ | $60 \cdot 3^{\circ}$ | 12.94 | 0.8629 | $26 \cdot 00$ | $427 \cdot 2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $19 \cdot 9$ | $14 \cdot 34$ | 0.8939 | 29.84 | $426 \cdot 9$ | 86.5 | 12.09 | 0.8424 | 23.77 | 427.6 |
| $\mathbf{4 0 . 9}$ | 13.52 | 0.8780 | 27.64 | 426.3 |  |  |  | Mean $427 \cdot 0$ |  |

540. Ethyl nitrilotricarboxylate. B. p. $143^{\circ} / 10 \mathrm{~mm}$.; $M 233 \cdot 22 ; n_{\mathrm{C}} 1 \cdot 42665, n_{\mathrm{D}} 1 \cdot 42897, n_{\mathrm{F}} 1 \cdot 43456$, $n_{\mathbf{G}^{\prime}} 1 \cdot 43877 ; R_{\mathrm{G}} 52 \cdot 53, R_{\mathrm{D}} 52 \cdot 88, R_{\mathrm{F}} 53 \cdot 38, R_{\mathrm{G}^{\prime}} 53 \cdot 82 ; M n_{\mathrm{D}}^{20^{\circ}} 333 \cdot 51$. Densities determined : $d_{4{ }^{20}}{ }^{\circ} 1 \cdot 1392$, $d_{4}^{40 \cdot 0^{\circ}} 1 \cdot 1198, d_{4}^{60 \cdot 9^{\circ}} 1 \cdot 0994, d_{4 \cdot 1^{8}}^{86 \cdot 1^{\circ}} 1 \cdot 0749$. Apparatus $E$.

| $t$. | $H$. | $d_{4^{\circ}}^{i^{\circ}}$ | $\gamma$. | $P$. | $t$. | $H$. | $d_{4^{\circ}}^{i^{\circ}}$ | $\gamma$. | $P$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $18 \cdot 9^{\circ}$ | $13 \cdot 11$ | $1 \cdot 1403$ | $34 \cdot 82$ | $496 \cdot 8$ | $60 \cdot 2^{\circ}$ | $11 \cdot 84$ | $1 \cdot 1101$ | $30 \cdot 35$ | $497 \cdot 3$ |
| $20 \cdot 5$ | $13 \cdot 03$ | $1 \cdot 1387$ | $34 \cdot 81$ | $497 \cdot 5$ | $86 \cdot 8$ | $11 \cdot 15$ | $1 \cdot 0742$ | $27 \cdot 89$ | $498 \cdot 9$ |
| $40 \cdot 2$ | 12.52 | $1 \cdot 1196$ | 32.65 | $497 \cdot 9$ |  |  |  | Mean $497 \cdot 7$ |  |

541. Dimethylaniline. B. p. $194^{\circ} / 760 \mathrm{~mm} . ; M 121 \cdot 18 ; n_{\mathrm{C}} 1.55110, n_{\mathrm{D}} 1 \cdot 55776, n_{\mathrm{F}} 1.57051, n_{\mathrm{G}^{\prime}}$ 1.59132 (line very faint) ; $R_{\mathrm{C}} 40 \cdot 40, R_{\mathrm{D}} 40 \cdot 81, R_{\mathrm{F}} 41 \cdot 84, R_{\mathbf{G}^{\prime}} 42 \cdot 80 ; M n_{\mathrm{D}}^{20^{\circ}} 188 \cdot 77$. Densities determined: $d_{4^{\circ}}^{20^{\circ}} 0.9571, d_{4^{\circ}}^{62 \cdot 0^{\circ}} 0.9255, d_{4^{\circ}}^{96.2^{\circ}} 0.9055, d_{4^{\circ}}^{119.7^{\circ}} 0.8783$. Apparatus $B$.

| $19 \cdot 5^{\circ}$ | $16 \cdot 11$ | 0.9575 | $36 \cdot 17$ | 310.4 | $86.8^{\circ}$ | 13.65 | 0.9050 | 28.97 | 310.6 |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| 66.3 | 14.39 | 0.9222 | 31.12 | 310.4 | 121.7 | 12.37 | 0.8768 | $25 \cdot 43$ | 310.4 | Mean 310.5

542. Diethylaniline. B. p. $214 \cdot 5^{\circ} / 748 \mathrm{~mm}$. and $86.5^{\circ} / 6 \mathrm{~mm} . ; \quad 149.23$; $n_{\mathrm{a}} 1.53578, n_{\mathrm{D}} 1.54178$, $n_{\mathrm{F}} 1 \cdot 55773$, $n_{\mathrm{G}^{\prime}} 1.57227$ (line faint); $R_{\mathrm{G}} 49 \cdot 74, R_{\mathrm{D}} 50 \cdot 20, R_{\mathrm{F}} 51 \cdot 42, R_{\mathrm{G}}, 52 \cdot 52 ; M n_{\mathrm{D}}^{20^{\circ}} 230 \cdot 08$. Densities determined : $d_{4^{\circ}}^{20^{\circ}} 0.9353, d_{4^{\circ}}^{40 \cdot 8^{\circ}} 0.9195, d_{4^{\circ}}^{61 \cdot 3^{\circ}} 0.9042, d_{4^{\circ}}^{85 \cdot 0^{\circ}} 0.8851$. Apparatus $C$.

| $19 \cdot 9^{\circ}$ | $15 \cdot 55$ | 0.9354 | $34 \cdot 53$ | 386.7 | $60.7^{\circ}$ | $14 \cdot 10$ | 0.9047 | $30 \cdot 28$ | 386.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40.9 | 14.81 | 0.9194 | 32.33 | $387 \cdot 0$ | 86.8 | 13.13 | 0.8837 | $27 \cdot \tilde{5} 5$ | 386.9 |
|  |  |  |  |  |  |  |  | Mean 386.9 |  |

543. Di-n-propylaniline. B. p. $242^{\circ} / 758 \mathrm{~mm}$. and $95^{\circ} / 4 \mathrm{~mm} . ; M 177 \cdot 28 ; n_{\mathrm{c}} 1.52333, n_{\mathrm{D}} 1.52873$, $n_{\mathrm{F}} 1 \cdot 54292, n_{\mathrm{G}^{\prime}} 1 \cdot 55539$ (line very faint); $R_{\mathrm{C}} 59 \cdot 05 . R_{\mathrm{D}} 59 \cdot 56, R_{\mathrm{F}} 60 \cdot 89, R_{G^{\prime}} 62 \cdot 05 ; M n_{\mathrm{D}}^{20^{\circ}} 271 \cdot 01$. Densities determined : $d_{4^{2}} 0^{\circ} 0.9176, d_{4^{4}}^{41 \cdot 2^{\circ}} 0.9021 . d_{4^{\circ}}^{61 \cdot 1^{\circ}} 0.8879, d_{1^{\circ}}^{85 \cdot 8^{\circ}} 0.8695$. Apparatus $C$.

| $22 \cdot 0^{\circ}$ | $15 \cdot 08$ | 0.9160 | $32 \cdot 79$ | $463 \cdot 1$ | $60 \cdot 4^{\circ}$ | $13 \cdot 67$ | 0.8884 | 28.83 | $462 \cdot 4$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $24 \cdot 3$ | $14 \cdot 95$ | 0.9145 | $32 \cdot 46$ | $462 \cdot 7$ | $87 \cdot 5$ | $12 \cdot 84$ | 0.8683 | $26 \cdot 47$ | $463 \cdot 1$ |
| $42 \cdot 4$ | $14 \cdot 39$ | 0.9012 | $30 \cdot 79$ | $\mathbf{4 6 3 \cdot 4}$ |  |  |  | Mean $463 \cdot 0$ |  |

544. Di-n-butylaniline. B. p. $269-270^{\circ} / 760 \mathrm{~mm}$.; $M 205 \cdot 33$; $n_{\mathrm{C}} 1 \cdot 51444, n_{\mathrm{D}} 1 \cdot 51929, n_{\mathrm{F}} 1 \cdot 53246$, $n_{G^{\prime}} 1.54349$ (line very faint); $R_{\mathrm{C}} 68 \cdot 29, R_{\mathrm{D}} 68 \cdot 84, R_{\mathrm{F}} 70 \cdot 30, R_{\mathbf{G}^{\prime}} 71.51 ; M n_{\mathrm{D}}^{20^{\circ}} 311 \cdot 96$. Densities determined : $d_{4}^{20^{\circ}} 0.9058, d_{4}^{41 \cdot 3^{\circ}} 0.8905, d_{4}^{61 \cdot 0^{\circ}} 0 \cdot 8763, d_{4}^{85 \cdot 4^{F}} 0.8581$. Apparatus $C$.

| $15 \cdot 1^{\circ}$ | 15.22 | 0.9083 | 32.82 | $541 \cdot 1$ | $61.6^{\circ}$ | 13.61 | 0.8759 | 28.30 | 540.7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40.7 | 14.35 | 0.8901 | 30.32 | 541.3 | 87.8 | 12.80 | 0.8567 | 26.03 | $541 \cdot 4$ |
|  |  |  |  |  |  |  |  | Mean $541 \cdot 1$ |  |

Woolwich Polytechnic, London, S.E. 18.

